
1

Trailer: http://playdead.com/inside/

Specifically rendering wise that might be useful to others

Essentially use vanilla light-prepass rendering (unity: “Legacy deferred”)

Note: single “grabpass” (copy of backbuffer) at first effect that uses it in translucency

note: shadowmaps for “static” lights actually span several frames
note: reflection-textures are rendered before the frame

Fog turned out to be very central to our artstyle

Many of the initial scenes in the game were literally just fog + silhouettes

Quick set of images to show how much mileage our artists get out of the
fog

Here without no fog or “scattering”
...we are relying on simple fog A LOT for our expression, very bare
without it.

Fog, no “scattering”

Really uses fog to set the mood
Simple linear fog!

Only interesting tidbit: We clamp the fog to a max-value to enable bright
objects to “bleed through”
(not shown here, used for headlights, spotlights etc.).

fog+glare
the main effect of glare here is atmospheric scattering
(adds a bit of vignetting as well)

Artists added early on.
The old-school low-threshold “Buttery lens” LDR glow-effect that makes everything
look unintentionally misty…
Unsurprisingly, works well at intentionally creating a misty look :)

http://www.chrisoat.com/papers/Oat-SteerableStreakFilter.pdf

www.daionet.gr.jp/~masa/archives/GDC2003_DSTEAL.ppt

http://www.chrisoat.com/papers/Oat-SteerableStreakFilter.pdf
www.daionet.gr.jp/~masa/archives/GDC2003_DSTEAL.ppt

There was a need for a tight glow-pass.
We tried just using a combined glow-pass with weights for each layer, but the fog-
glow and the narrow glows interfered too much with each other... so added two
separate passes (and tweaked them for their respective uses).

If bloom calculated with a certain intensity, we need to show source pixel with the
same intensity

- obvious in hindsight, but very easy to just add a glow-intensity slider and not think
any further of it – made a big visual difference to do it right!

Jimenez, Mittring (samaritan)

(yeayea the source-image already has glow, you pedant, you!)

http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-
warfare
https://de45xmedrsdbp.cloudfront.net/Resources/files/The_Technology_Behind_the
_Elemental_Demo_16x9-1248544805.pdf

http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
https://de45xmedrsdbp.cloudfront.net/Resources/files/The_Technology_Behind_the_Elemental_Demo_16x9-1248544805.pdf

Observation is that the same texels are sampled multiple times.

We use 9 samples instead of 13 the original samples, by fitting the samplepoint to
utilise bilinear filtering to only sample each texel once.
(really, this should be done to a gaussian distribution, instead of this already
approximated sampling... next time)

Corner sample has 8% error on bilinear weights, top sample is exact. Visually good
enough.
Because we rely so much on the bilinear filtering, if we are not downsampling to
exactly half resolution, we get severe issues... so use full 13 taps in that case.

(iirc saved ~0.1ms)

http://docs.scipy.org/doc/scipy-
0.16.0/reference/generated/scipy.optimize.minimize.html
https://twitter.com/adamjmiles/status/683041184915263489

http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.optimize.minimize.html
https://twitter.com/adamjmiles/status/683041184915263489

TAA feeds into the bloom (important, as it also AAs the bloom-mask - very hard to do
decent HDR-glow with aliasing input”)
Independent glow passes (but interleaved for performance reasons)

“HDR resolve” from glow mask

Radial offsets

Three samples @1080p, 8 samples at 4k, jittering 8 sample above 4k. Jittering is hard
on T$ but scales well.

We desaturate a bit afterwards, so it’s in essense a very small radialblur

Larger offsets, underwater or highe res, radialblur with coloring

-
Done on both main image and glowtexture (faster than to add the extra pass to the
glow-texture)

Want different colors? Hue-shift RGB-texture. Or design your own, just make sure:
At any point, RGB-weights must sum to 1 (for luminance to not vary)
Pixels must sum to (1,1,1) (for white to remain white)

Shadertoy implementation of jittering, not using the RGB-lookup trick.
https://www.shadertoy.com/view/XssGz8

https://www.shadertoy.com/view/XssGz8

Brightness adjustment

Smooth minimum of 1 and the brightness curve

(…we also have saturation-adjustment)

--
Our brightness implementation
https://www.shadertoy.com/view/Ml3GWs
- comparison of various methods:
https://www.shadertoy.com/view/MtjGWm

Shader implementation on smooth-min / smooth-max
https://www.shadertoy.com/view/ltf3W2

Some theory
http://iquilezles.org/www/articles/smin/smin.htm

…back to fog!

Turned out we needed way more local control over fog that just the global linear fog
we just showed.

Effects
- Underwater
- Flash lights
- Dusty air

23

Naïve brute force sampling
prohivitively large number of samples (around 128 required in this scene)

Down to 3.2ms which is still quite slow…
…and artefact case is severe stepping artefacts

Ugly AND slow…

slower due to worse T$ than uniform sampling
...still needs an impractical number of samples, making it too slow…

But artefacts are better, human eye quite forgiving towards noise… interesting
property! Let us explore that a bit further…

same image as before, but with 3 samples instead of 32… shadow effect barely recognizable
massive undersampling, loads of noise

Less noise because entirely homogenous pattern - no random!

(we actually used Interleaved Gradient Noise for a while as very fast to compute, but very
hard to filter out moiré-like artefacts caused by pattern... Same with bayer)

Better sampling - all values represented in small region
BUT - eye NOT forgiving to structure
SO want
- No structure
- Quick changes within small region => a high pass filter

--
Also, within a local neighborhood, all values are represented
(with noise, maybe they were, maybe they weren’t)

It is a goal to have as much sampling-diversity within as local a region as possible.

A Bayer-matrix is optimal in this regard, but is structured…
causes moiré-like patterns, which are very noticeable
very hard to filter the structure out of the image again.
So what we need is something without structure, but with all values represented in a small
area. So a high-frequency noise.

Bayer matrix property from wiki:
”average distance between two successive numbers in the map is as large as possible,”

high-pass filtered uniform-PDF noise (blue noise)
no structure
more values represented in a local neighborhood

--
Artefacts occur in undersampled areas, low-frequency areas ok
Uniform noise has no patterns, but heavy noise
Bayer pattern is the most uniform, best sampling, but causes noticeable patterns in
undersampled areas (when signal aligns with pattern). Moiré patterns ensue.
(...about 5% slower than Interleaved Gradient Noise, but we can get away with way less
samples without artefacts.

Blue noise gives decent sampling, while falling back to noise for artefacts in undersampled
regions Can get away with much fewer samples \o/

http://excedrin.media.mit.edu/wp-content/uploads/sites/10/2013/07/spie97newbern.pdf

http://excedrin.media.mit.edu/wp-content/uploads/sites/10/2013/07/spie97newbern.pdf

How we distribute our samples
Local fog-volumes are defined in the editor by a box.

-
additive effect - we add the light caught by fog in the room, we do not add fog locally.
Global fog should match (but we leave it up to artists)

Clipping with all planes and patching up the holes.

Recalculate only when relative transform between fog-volume and light changes (ie
mostly static)

Built this algorithm, then realised it was identical to 3D Sutherland-Hodgman… not
overly well described online.
Implementation uses static lists of polygons. Plane-intersections boil down to a 1D
“InverseLerp”, so very fast.

Still, only do calculation if light/box transformation changes.

using geometric clipping for effect

volume 1
light cookie-texture
default light falloff

volume 2
animated caustics cookie texture
no falloff

using geometric clipping for effect

volume 1
light cookie-texture
default light falloff

volume 2
animated caustics cookie texture
no falloff

Smooth effect, low frequency

Not required to sample at full res

break up pattern using noisy blur
(depth-discard per sample)

insight from ssrt-presentation by DICE
http://www.frostbite.com/2015/08/stochastic-screen-space-reflections/

The real reason we are breaking up the structure, is because the Temporal Anti-
Aliasing looks at the neighborhood, and half-res details confuse it.

This is just our regular post-effect temporal anti-aliasing working it’s magic, nothing
special added for this.

The reason why we have been obsessing about samples is that this technique is
primarily bandwidth bound from the potentially many texture-samples.

https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/Deinter
leavedTexturing.pdf

Future work: cookie importance sampling (e.g. equi-angular sampling for spotlights)
Future work: 3D blue-noise to improve variation in sampling-distribution over time

https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf

Select shadowmaps are kept around after light-pass.
Half-res volumelight buffer is saved for use in translucency pass, where the fog-
geometry is re-rendered and sorted with other translucencies.

We have several effects that play into the hand of TAA, undersampling the effect and
letting the TAA do integration over time.

speed? Faster than single sample PCF, because the shadowmap can be smaller with a
better filter.

Future work: Test blue-noise

Goto-sampling pattern, same sampling for gcube resolve, depth and shadows...

Boils down to covering an equal area with each sample

-

If you want a different filter, e.g. gaussian, you can adjust the sizes of the areas to
achieve this, rather than assigning weights.
(to help your google along, the proper term for this would be importance sampling)

http://www.loopit.dk/banding_in_games.pdf

very soft image, lots of subtle color-tones

…this image has a lot of noise though – not really visible

(note: this image is dithered using a TPDF noise, not bluenoise)

No dithering.

Note: tweaked colors even more. Not cutting off any values. On a decent enough
monitor, the game would look like this without dithering.

Note: TAA also broken here…

Stairstepping => banding
-
we represent values as discrete values.. eye notices high frequency changes. Also
great at dark colors.

Use highest precision possible
Use sRGB or similar biasing towards darks on colors
If banding still visible, dither.
If full 16bit HDR pipeline: Dither when tonemapping to 8bit colortarget.
(almost always dither any 8bit write...)

See Charles Poynton’s Digital Video And HDTV Algorithms and Interfaces, p 269

moar details on banding:
http://loopit.dk/banding_in_games.pdf

moar details on srgb
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-
bbf8f84fb7e1/Picture%20Perfect%20-
%20Gamma%20Through%20the%20Rendering%20Pipeline.zip

http://loopit.dk/banding_in_games.pdf

Example of dithering
Add 1 bit of noise to signal before quantisation
Look at value 0.75

-

If we look at the accumulated error for a single value (integrating over the red/blue
stippled line), the error will now cancel out as well as for entire signal, resulting in the
original signal for any arbitrary single value

intuitively, since the noise-distribution is uniform, when integrating across the line
shown the length of the line corresponds to the probability that the value will either
round up or down
...integrating floor(f) / ceil(f) across this line, we’ll end up at the signal

divide by 1 LSB

Spectacularly easy to add
Potentially make your game look at lot better

https://www.shadertoy.com/view/ltBSRG

https://www.shadertoy.com/view/ltBSRG

...noise is uniformly distributed, but the resulting visual noise is NOT uniformly
distributed - almost no noise near “correct” values (where the value crosses bit-
borders and is truncated to value itself).

Variance: average of (q-mean)^2

https://www.shadertoy.com/view/ltBSRG

https://www.shadertoy.com/view/ltBSRG

quantisation banding is gone, but the amount of noise vary across the signal, causing
bands with visibly less noise to appear

https://www.shadertoy.com/view/ltBSRG

https://www.shadertoy.com/view/ltBSRG

As it turns out, this is a property of the noise we are using - or rather, a statisticaly
property of the distribution of the noise.
The phaenomenon is known as noise-modulation, which is the effect of the resulting
error, after quantisation, being dependant on the signal

We would much prefer it being entirely uniform (as eye does not notice it then)

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf;jsessionid=7
4681FAF2CA22E754C673E9A1E6957EC?sequence=1

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf;jsessionid=74681FAF2CA22E754C673E9A1E6957EC?sequence=1

Luckily, the solution is to just use different distribution for the noise

The error resulting from a triangularly distributed noise is independent of the signal.

TPDF (Triangular Probability Density Function) is the simplest distribution of noise
that has this property… a Gaussian distribution does too, but is more complex to
calculate.

Two easy ways to generate a TPDF:
1. Add to uniform distribtions (literally just (rand(seed0)+rand(seed1))/2)
2. Reshape a single uniform distribution (see e.g.

https://www.shadertoy.com/view/4t2SDh)

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf;jsessionid=7
4681FAF2CA22E754C673E9A1E6957EC?sequence=1

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf;jsessionid=74681FAF2CA22E754C673E9A1E6957EC?sequence=1

Much better! Can’t see any “bands” of no noise

Also now 2bit wide ("overlaps" the dither-noise to compensate for the magnitude of
the noise being non-uniform).

https://www.shadertoy.com/view/ltBSRG

https://www.shadertoy.com/view/ltBSRG

much better, can’t see any “bands” of no noise
- but we have added quite a lot of noise, what do do about that?

https://www.shadertoy.com/view/ltBSRG

https://www.shadertoy.com/view/ltBSRG

blue noise to the rescue again

https://www.shadertoy.com/view/ltBSRG

https://www.shadertoy.com/view/ltBSRG

Perceptually less noise

https://www.shadertoy.com/view/ltBSRG

https://www.shadertoy.com/view/ltBSRG

Texture with bluenoise
Sometimes ALU-based TPDF noise
Depending on bottleneck

-

optimised remapping by forsyth
https://www.shadertoy.com/view/4t2SDh

blue noise by Timothy Lottes
https://www.shadertoy.com/view/4sBSDW

blue noise array using generational algorithms
http://excedrin.media.mit.edu/wp-
content/uploads/sites/10/2013/07/spie97newbern.pdf

https://www.shadertoy.com/view/4t2SDh
https://www.shadertoy.com/view/4sBSDW
http://excedrin.media.mit.edu/wp-content/uploads/sites/10/2013/07/spie97newbern.pdf

Banding in the lighting… so let us dither the lighting pass

Noise not entirely uniform
Finalpass writing into low-precision buffer as well

Entirely uniform noise across image

More so as every pixel written and read multiple times for blending

-
Note on blending:
Can not determine amount of noise needed for e.g. multiplicative blending - add
artist-controlled amount

additive/subtractive blending ok
multiplicative blending is not

lerp, modulate etc.
needed amount of noise depends on unknown target
add artist-controlled amount of noise

(TAA soaks it up)
additive lights with exp(-i) encoding :(

See http://loopit.dk/banding_in_games.pdf for more on this.

our solution dithers after every pass
manually converts all intermediate rendertargets to srgb (pow2, nothing fancy)

Dithering at lower resolutions (as used for blurring) results in larger than 1pixel noise,
which had us worried but turned out to not be visible.
sRGB goes a long way! adding noise was necessary for us though (srgb approximated
by pow2)

...dither gbuffers too! Normals are written to 8bit rendertargets

Fixes unsightly patterns in specular highlights
(the lines that are still noticeable are due to linear interpolation across triangles)

74

Now let’s talk about custom lighting
Like we said, we use light prepass deferred rendering, which allows us to do a few
tricks
We don’t need to limit ourselves to render just point lights, spotlights and direct
lights
We exposed the ability to render out any object with any shader, because we can!
So with this we get custom lights, we’ve got a bunch, let’s look at 3 of these

The bounced light is used for, you guessed it, global illumination

It’s pretty much just a regular lambert point light, except…

Rather than using a vanilla dot product, we fade that down using a slider
It’s called lambert wrap or half lambert
Gives a less directional, more smooth result

We can fade off the normal completely if we’d like, giving us a more ambient light

Since they’re not static, we often use them for opening windows and moving
flashlights

Unlike regular points where you’d have to make a sausage of points to cover a
corridor, or an array to fill a room

We use the full transform matrix, to give us non-uniform shapes,
Fits more cases with stretched pills and squashed buttons, and it’s cheaper because
we get less overdraw and overlap

Now for AO Decals
Since we can draw whatever, we can also blend however, we aren’t limited to
additive lights, so we made multiplicative ones.
This is our only AO solution, we don’t wanna use SSAO due to it’s lack of local control
and artefacts associated with screen space effects.
We have three of these, so let’s take a look first at…

The point.
We use these mostly for characters, it ground them to the world, other characters
and to themselves.
We set them up one per bone, stretched to fit the volume of that limb.
It makes it easy to see the contact of arms against sides, and the head on the
shoulder and so on.
In this example we’ve probably got like 256 of them, I see 16 characters and I count
16 bones each.

Their implementation is easy, if you start with a regular half lambert point light aka
bounced light, which is additive.

And just make it multiplicative rather than additive, you’re done.

This entity has no wrap parameter, we fixed it to half lambert, and gave it a fixed
falloff.
Since we put so many, it’s important to have controls be easy, so all we got is the
transformation (position/rotation/scaling) and an intensity slider.

Next up, spheres.
These are for our larger round occluders, like this submarine. In these cases we also
need the contact to be apparent to judge distances better.

With implementation, we start with a regular lambert point, again

But in this case, we don’t want the angle between the occluder and the surface
We want the solid angle coverage between occluder and surface
So to implement this, instead of doing our normal normalizer term, we use…

This, which actually gives you that result accurately, the covered sum.
Assuming the occluder doesn’t intersect the surface, which we do assume.
This implementation comes from Íñigo Quílez [Quílez06]
http://www.iquilezles.org/www/articles/sphereao/sphereao.htm

Next up, boxes.
For the many boxes and crates that are used to solve puzzles.
Obviously the requirements are different here, we want sharp falloffs along corners.

For implementing this one, we need the unsigned distance vector
Then get the angle around that vector

But that’s too harsh, especially when looking at an exaggerated fractional.
So we use the squared distance vector instead, smoothing out the first derivative
completely.

Each side should look like this, kind of a planar area ligh.t
Composed like below, now we get those corners.
This solution is not physically accurate in any way, it’s totally empirically based. But it
is inspired by https://www.shadertoy.com/view/4djXDy [Quílez14]

Finally, shadow decals. This is our simplest custom lighting effect.
We use it for grounding in scenes with unshadowed lights and ambient lighting.
Like this one, let’s add shadows!...

There!
Implementation wise, this is just a box-shaped decal with a projected alpha texture
that multiplies the color of the light buffer. Also a falloff gradient.
Typically we end up with very soft, gradieted shadows, they lack the detail you’d get
with shadowmaps, on purpose to simplify.

And we use a lot of these!

Since they’re not static, we can use them in clever ways.
On a draggable box.
Anchored to boy’s feet, to avoid rendering point shadows from a torch, giving a very
OOT blob shadow look.
And on this big platform to get a nicely fading shadow, that you couldn’t otherwise
get.

Like I said we do a lot of these, a lot of pixels covered, so we wanna do minimal work
in fragment shader.
But we can do almost anything we like in vertex, since there are only 8 of those.
Normally you’d make a view ray in vertex…

Then in fragment multiply depth, transform it to decal or object space here.
At the cost of a matrix multiplication
Luckily, fixing this is simple, especially if…

You’ve done world space interpolated rays for world space reconstruction before!
In this case, you make a view ray in vertex

Transform it to world, while in vertex

Then finish it off in fragment by multiplying by depth and adding world offset
This world space position uses only a single MAD or FMA, so that’s neat.

But here for decals we’d still need to use a matrix in the fragment shader
So…

For the decal version, we do the same view ray in vertex

Transform it into object space for our rotation

And our scale

And then now we can get away with an FMA or MAD in the fragment shader for our
decal position!

Another decal type we have are SSR or Screen Space Reflection.
We don’t do it as a post effect, but rather locally, as puddles.
We prefare this over planar oblique clipping camera reflections, since what you see is
what’s reflected, no tagging of reflected objects or imposter modelling required, and
also the lighting and shading doesn’t need to be replicated in forward.

Setup is almost just drag and drop, we just need to define a color.
Backup color, which is what we fade to in case our ray misses.
Texture that represents the puddle shape.
Fresnel power to control opacity of the reflection.
And finally trace distance, which is the only trace-affecting parameter, it simply says
how far the ray needs to go, from 0 which travels nowhere to 1 which traverses entire
screen.

Disadvantages are of course, what you cannot see is not reflected.
Like in this case, where we fade out along the edges of the screen.

This we do, since a ray might fall outside the screen if it points into that direction,
but we’ve got an advantage…

We’re a 2.5D sidescroller, our camera typically points inwards to the screen and
only scrolls.

So if this fade is causing issues in a scene, we simply force all rays to have no X
movement, alá sDir.x *= 0.0;

Now a ray will never go out those boundaries, so we disable the fading.

Other case of what you cannot see is not reflected is occlusion.

Particularly the boy, you’re pretty much bound to notice that you can jump in puddles
in front of walls to make ghosts of yourself, if for no other reason just to annoy me.
We need not solve all occlusion and it’d be pretty hard, but we can try and solve this
one in a couple of ways. Our solution is to stitch surrounding details, sometimes
horizontally, sometimes vertically along the line of reflection. Let's start with
horizontal.

This solution starts with us making a screen space bounding box around our boy. If
our ray gets inside, we’re close to being boy occluded.

If that, plus our ray is behind the depth buffer without hitting anything, we feel
confident that we’re not boy occluded.

So in the case of a ray tracing into the scene and hitting this condition, what we do,
is…

Tell the ray to move to the nearest horizontal exit of the bounding box…

And continue tracing from there.

The second method doesn't need a boy bounding box, and it's much more general.
Where as the previous method ends up stitching horizontally, this one stitches
vertically, or in the direction of ray travel.

We if we're seeing the boy in front of a haystack here.

Then cast out a ray.

This is what we cannot see or reflect, this is our problem space.

In fact this is how it looks as a height map, we'd just reflect an elongated boy

Let's get the code in there.

So, we don't want that elongated boy, so we assume some wall thickness with a
target depth, more on that later.

And of course it's not that nice, cause we trace in steps. Quantizing our scene a bit.

So the solution to this stitching is in these two places, we need the results before and
after these blue lines to stitch out the occlusion.

To do so, we're gonna need some state.

Let's start tracing, first step is in the clear, so we save the last distance to the depth,
as well as the position for this sample. And in any case we save the depth from this
sample.

This step is also in the clear, so same goes.

Whoops, we found a wall, we no longer save the distance to the depth, or the pre-
occluded position.

Let's keep stepping...

...

...

...

There! So we found this other wall by checking the difference between last depth
sample and this one, if it's bigger than the wall thickness, that's a gap!
Now we sample a weighted mix of these two places, and return that.

These are hacks, but it makes SSR usable for us, and artefacts are nearly
imperceptible since our game is so low detail.

So, for our reflections we need some directions, but not view space, rather we need
screen space reflection directions.

So we need to project our directions, not positions, into frustum space.

The easy way to do this is to project a position, our reflected position.
So take the starting position and the reflection direction.
Project them using matrix, devide by w and subtract the screen position.

We don’t like this due to the matrix, normalize and divisions required.
Plus it doesn’t handle positions clipped by near plane, even though we don’t
encounter that scenario, it’s neat to solve.

So our solution starts by generating a bit of data on the CPU, this vector is essentially
the size of the viewport that we’re using.

Then in fragment we can do this using the same data from before and this new
number.
This version doesn’t need normalization, but it does have a couple of divides.
Luckily we can kill those…

This, there. The new vRay.xy is the same as the vPos.xy / vPos.z from before.
Reciprocal depth is just something that’s there while converting the depth to linear.
So now we’re down to a MAD, a MOV and a couple of MUL.
This method is naturally usable with other things, not just reflections, it can be useful
for SSAO vectors or anything screen space.

Now, SSR is a stochastic sampling effect, just like with volume light. So to avoid
stepping artifacts, we just need to add some dither or jitter to the first step,
giving us an offset at the length of a single step.

And just like with any stochastic, picking jitter pattern is important. White noise
gets the job done, but has a varying local neighbourhood histogram.

Bayer matrix has perfect neighbourhood information, an even histogram for every
local region, but too patterny on the eyes.

Finally blue noise again has the best of both worlds, a near-perfect
neighbourhood histogram, but no visually jarring patterns.

Why is it important to have a well covered local neighbourhood? Because It’s
used by temporal anti-aliasing. If a pixel has pretty much all possible value
within a 3x3 region that TRAA uses, it’ll be less likely clamped or clipped in
TRAA, and the history will be used a lot more, giving us temporal upsampling.

Finally, there’s the issue of wall thickness. We lack volume information when ray
marching, all we have is our depth buffer which is essentially an empty shell of
surfaces, so we need to know how thick we simulate this shell to be.

Our first implementation as a simple constant and a slider for it, but it was hard to
use and the results were unpleasant.
Second round involved using the delta of the screen reflection ray’s Z, so if we’ve
come into a wall between last step and this, we’re happy.
But this had problems when looking at walls that are 45 degrees to the viewer
generating reflection rays that are perpendicular to the view direction. In that case,
we have a 0 Z delta, and only move in X and Y.

To solve this, we can try to unwrap what was actually done in that abs(sRefl.z) term,
and here, it turns out the sinner is simply the reflection direction itself!

So if we remove it and simply use this instead, we remove our edge case, and are
almost guaranteed to hit something as long as it’s within view!

Another place we use reflections is water, but in this case, we don’t utilize SSR, for
something that fills the screen as much as water, we’d get too many out of bounds
issues. So we are using planar oblique clipping camera reflections.

Now when we think of water visually, we abstract it as layers, first a layer of
fogginess, murkiness or dirt, then refraction and finally reflection.
It turned out to be useful to render it out in practice as we think about it in abstract,
so first…

We render the fog, this is from surface to background geometry, we just have a color
and a distance aka how fast it fades in.

Then we render any transparent objects that have been tagged to be under water, we
do this because soon a screen shot will be taken, so that refraction can distort it and
put it back, and for that we need all that we want visible in that picture to be
rendered out now.

So after that we render the refraction layer. It uses a single stochastic sample along
the normal of the surface using blue noise to generate the distortion.

And lastly reflection, using Fresnel to control the opacity of the surface, and
distortion from normal to add motion.

Now, in case the camera is under water, the order of the objects have been shuffled
since the order we see things in is now different, and the shading is a bit different as
well.

This time we start with the reflection, and what’s different is that instead of a regular
power Fresnel, we use a smoothstep between two very close numbers to get a quick
transition to total reflection and back.

Then we layer fog on that, this time from view to the surface or scene depth,
whatever comes first.

Now we refract, and we add fog before refraction because this time we also add
depth of field to things behind the gameplay plane and we want that fog to blend
well with that.

Finally the transparencies tagged as under water, cause we don’t wanna blur or
distort that. The transparencies that are not tagged were naturally rendered before
any water was

Finally, for each layer we render out 3 surfaces to make the volume. We don’t have
any pops or clips when passing through, the water is supposed to take care of the
transition using shading alone.

We start with the closest, a displacement edge that spans anywhere from 6-12
meters from the camera near clip plane into the water.
This is needed otherwise we get a paper thin surface as we transition in and out of
the water. The limited distance is just because you hardly notice the parallax or depth
after a certain point.

It’s stuck to the camera and vertices are distributed linearly in screen space rather
than view space, for best distribution.

Secondly we render the outter sides of the volume, it takes care of whatever the
displacement edge didn’t.

It doesn’t draw on top of it, though. We render them in order of visibility front to
back, and use stencil rejection to make sure only the first surface is visible.

This is what is meant by outter sides, in this case a box. It’s simply the front faces.

Finally we render the inner sides, these use that underwater variant of the shaders,
they skip on the ZTesting and also reject on stencil so the outter sides are preserved.

150

151

Now let’s jump out and dive into some VFX, starting with smoke.

So you’ll notice that even when paused, there’s motion in the smoke column.
There’s also some gradiated lighting from the ground and more.
If we disable them they look like…

152

This! It’s hard to see now since the color is the same ambient color of the room. So
now let’s put them back one by one.

153

First the light from the ground, simulating GI. We just set up point lights specifically
for our particles

154

Up next we’re gonna add a subtle vertical gradient, we want the top to be lighter than
the bottom to simulated occlusion. So let’s enable that…

155

Now. So this just helps ground it a little bit. Finally, we add…

156

Distortion back! And now we’re back to where we started.

157

The map we use for diction is this swirl noise as we call it. It’s made by using the twirl
filter on a UV gradient in photoshop and pasting it around a bit in a tillable fashion.

158

We project this in worldspace onto the particles, with a random offset on each, and
scroll them in a single direction.
This time it’s down since that’s the direction it came out of the box.

159

Now, fire.

160

161

So other than fire we’ve got the same smoke shading from before, plus some sparks
and lighting.
We use the same distortion trick from the smoke, plus a constant upwards motion
bias since that’s where the fire wants to go.

162

But the most important thing to make the fire look right, when compositing so many
layers, was color.
So what we do is we render the fire, at first each sprite only into the alpha aka bloom
buffer, since we want it to HDR bloom anyway. We do it in this deferred way,
because…

163

We want a consistent mapping of color to luminance, we don’t want any dark whites
or yellows, and we don’t want any bright blues or reds cause by amplification via
multiple layers linearly blending.

164

So what we do is write it onto screen by mapping the alpha/fire/bloom channel
through a gradient LUT, getting insurance on our color/luma mapping.

165

Now, just distortion is not enough motion for us, we need flipbooks! But not a movie
that’s too big and too realistic.
So we have this 3x3 of random flame shapes, at fist we just cycled through them, but
repetition would happen every second, and it looked bad.
Second attempt we just tried picking random ones, but with only 9 sprites, there’s an
11% chance of hitting the same one twice, which looks like a pop or lag.
Our solution was… Why not both?

166

So we choose column sequentially…

167

And row randomly, to get the best of both worlds!

168

Obviously we don’t wanna just cut between them, so we… Fade between them, using
time as phase!... No…

169

We add a vertical gradient to that phase! Cause that’s the direction of movement!...
No…

170

We add a noisy gradient to that phase, cause why not!

171

Next up I wanna talk about lens flares. Ones made not by post process but by…

172

By placing sprites in the world, onto flash lights, like this one.
We didn’t wanna ray trace against collision since that’d be expensive, plus who wants
to put collision on these trees that you’ll never even touch anyway?

173

So we sample the depth buffer, in the vertex shader, and multiply our flare texture by
the result in fragment.
We sample a bunch of times on a golden ratio spiral, like 32 times, it’s only for 4
verticies anyway.

174

But of course we don’t sample the corners, that’d be silly, so we sample the center, a
point we can just get from the modelviewprojection matrix.

175

But we also don’t sample from *just* there, we sample somewhere in between, use
a little offset of like 10% toward the corners so that we get a bit of a gradient across
the sprite in the end, for free.

176

Next up let’s look at some effects for water.

177

First up is this column of foam, it’s using the same shading as the smoke from before,
so not gonna go into details, just gonna show you what it’s like if effects get removed.

178

Here’s without motion distortion, the distortion helped sell the bubbling motion.

179

And here’s without the lighting, the lighting gives an otherwise flat foam some depth.
It’s just making the top brighter than the bottom per sprite, again.

180

181

So up here, the importance is with the flash light. If the boy swims into it, he dies. So
we emphasise it with 3 effects.

182

Firstly, the rain.
It can be done in a few ways and we tried 3 of them.
You could use scrolling textures as post, but it’ll lack some real parallax.
It could also be individual particles, but the generation cost on the CPU is heavy so
also a no-go.
Could also be billboard particles, but the overdraw between the drops is too intensive
on the GPU.
So we went with…

183

Vertex shader animation!
This is the wireframe of the rain, there are a few different effects per drop. They all
share the same principle of putting them in a random position seeded with a whole
number or integer part of time and an offset, and unfolding their animation over the
fractional part of time.
One type is the falling lines, the animation here is just move down from the top to
the bottom of the mesh’s bounding box.
Then there are the splashes, they all scale up from 0 to full in their animation and
fade out from some intensity to 0.

184

Second effect, already covered is the volume lighting. Both above and below, with
different settings and sorting times.

185

And finally some specular and diffuse lighting on the surface.

186

187

Down below we have something similar to the rain, little dust or dirt particles. They
use the same vertex animation technique to make lots of them fast.

188

Down here the volume light has an animated texture of caustics to give it some life
and underwaterness

189

Finally that specular again, except this time it’s not specular reflection, but “specular
refraction” pretty simple but fun effect.

190

Coming up, we see the boy is generating these waves. They’re made from mesh
particles, using a ring shaped mesh that expands out.
The shading is simply using some new, analytic normal to resample the reflection and
refraction, we generate those normal by…

191

First using the local particle position as a normal, pointing away from the center,
then…

192

We multiply that by a sin going from 0 to 2pi/tau, to get 0 at the edges and the
middle, inward normal at one third and outward normal at two thrids.

193

Now, let’s talk about another shape of water.

194

195

So this water is not a cube, it’s a cylinder, and it’s using outward motion.
We could have done this motion using zoom and fade, but we choose…

196

Mapping radially and scrolling outward, the mesh is fairly high poly so we can do all
scrolling and fading math in vertex.

197

The texture of course has normal, but more importantly the foam. So we needed
something that looked like waves of foam, tiled so we could scroll, but in a
nonobvious way.

198

The pattern we went for is called the European fan or wave cobblestone. It does tile,
but in a non-tilly way.

199

Drawing waves on top to get the shape template…

200

Then using pictures of beach waves that are aligned with said template lines…

201

Remove the lines, and we’ve got a nicely tiling wave map!

202

Finally…

203

So this effect uses a lot we’ve talk about up until now.

204

First we got a water volume using the foam texture from before, this one isn’t just a
cube though, it morphs using morph targets aka blend shapes. We’ve got 3
targets/shapes, one for before, one for during and one for after

205

We tessellate the mesh only on the flood and along the windows to show the
displacement. We scroll the texture toward the flood and then out along it.

206

Second we got this decal on the ground using that same foam texture again, as well
screen space reflections.

207

To really sell the motion on this one, we wanted it to look like it was really *pushing*
this the foam outward, so going faster and stretcher in the beginning and slowing
down at the end. This was achieved by simply adding a power function to the V of the
UVs, starting at a power like 4, and gradually going down to simply 1 and linear.

208

Finally, and most visibly, the foam. First we have a big carpet of foam on top of the
flood, with the same movement speed and shape. Lit from behind, using all the same
shading as earlier.

209

Then we’ve got an impact effect to melt together the flood and the decal.

210

And finally just some sprays to make it more intensive in the beginning.

211

TODO: illustrative images instead of bullethell!

TODO: illustrative images instead of bullethell!

214

TODO: illustrative images instead of bullethell!

216

217

218

