
1

Entirely PC specific pipeline, our console setup is a lot different, so this presentation
only covers the PC
It’s a AAA game with OpenGL (zomg!1)
Focus on API usage, will not go too much into rendering-algorithm details

2

UK based games company

Started as a mod-team, Wolfenstein enemy territory -> doom3 multiplayer -> qw:et -
> Brink on PC/xbox360/ps3

3

4

5

Thin layer in the sense that we try to move as many responsibilities to the game-code
as possible – e.g. Interpolation of post-process values
Not bitsquid-engine level datadriven, but we have a lot of logic in text-files that can
be hot-reloaded at runtime.
Adding features at very end of project is viable (e.g. FXAA, though that says more
about fxaa... try it today)
No sampler-objects for compatibility reasons.
Target hw nv8800+´/ amd2900+

6

Most of this is pretty standard stuff.
One of the reasons for preferring fat gbuffers to “light prepapss” is our virtual
texturing pass.
Doing the VT indirection from more than one pass takes long (accessed for normals,
and again for albedo/spec etc.)

8

depth is straight copy from depth-buffer (possible in OpenGL)
Two sets of decals: ”Regular”, emissive or multiplicative decals in transl, albedo-
blended in ”decals”
FXAA
HBAO

9

10

11

12

A list of objects to be rendered into every renderpass is build and sorted to reduce
state-change. No state-”caching” required as only minimal state is set.
A single initial block of state per render-pass (e.g. no depth-test for translucent, no
color-write for depth etc.)

In attr-pass, most environment will be static and have the same shaders. Few changes
between drawcalls (due to vt)

13

Artists will usually team up with a gfx-programmer or tech-artist to create new
shaders.
We have been very happy with this model. The artists too. Few shaders: Less places
to optimize – and optimizations done affect more areas.

Low number of shaders largely due to deferred rendering
Low compile-time means not necessary to cache binary shaders (using extension)

15

Pre-processor does the usual stuff – a lot of it now available, but was not at the time
of writing

17

Pre-procssor also picks up uniforms, textures and vertex-attributes (essentially just
defines again), making it easy to add new uniforms that are then picked up from
code.
(added bonus: It’s easy to spot uniforms in code)

18

Game does area, portal and frustum-culling before any occlusion queries

19

Dicing of static geometry based on geometry-density – roughly 8x8x8m chunks

If lights are visible, we wrap the actual render-call in an OCQ (could do the same for
geometry, but we don’t....)

20

21

Bbox expansion per box, along world-major axis is fine – could do better but no gain
as coarse approx anyway

22

23

24

Multiple sources

25

Essential idea is to only load the data needed – same goal as any other streaming
system.

26

One of the main benefits is the reduced complexity for artists: They can use as much
texture as they want, as long as it fits on disk.
(they still need to worry about varying texel-density, as we don’t have a step that
unifies this.... It is possible though).

A build-step takes all textures and packs them into an atlas, then modifies the vertex-
data uv-coordinates to point to the new UV.
(it also saves original texture-size to allow for texture-wrapping).

Brink is not limited to entirely unique textures, we allow for reuse of textures, and
texture-wrapping.
Unique is slightly faster in shader, but requires more memory... Allowing re-use is why
we can ship on one dvd, and not three....

27

As all objects are using the same texture (the virtual one), there is a significantly
reduces dependency between drawcalls.
this allows us to 1. dice up the world across objects, and 2. never change textures
while rendering vt objects

We have multiple page files which leads to multiple address spaces. E.g. dynamic
objects are in a separate address-space. Each level has a separate file. Support 256
concurrent address-spaces – DLC accesses 3.

28

Rendering uses the page table in the shader to convert from virtual to physical
coordinates to look up the correct texture mapping
3 dependant texture-reads into virtual textures (diffuse / normal / specular). All using
the same UV – so essentially a single TLB with multiple address-spaces.

Never fails completely – always loads lowest 3-4 mip levels on level-load (only a
couple hundred kb)

30

low-res packed rgba32 ID-buffer
- page_u, page_v, mip-level, <virtual adress-space index>

ID buffer gets rendered and read back
Analysis determines a page miss (in case of page-hit, MRU table gets updated)
Page gets reserved in the physical address space (8192x8192, storage is DXT textures,
4096x4096 on consoles)
Page data gets loaded from storage, then transcoded from DCT to DXT
“TLB” (2D texture with 1 texel/page in the address space) gets updated with mapping
information from virtual to physical coordinates

31

The PBO being valid in all threads makes it easy to utilize other threads for the
analysis

32

With alternate-frame-rendering using SLI, you need to add a frame latency for an
async texture readback per GPU in order to not stall a gpu during rendering

33

Using the hw anisotropic mipmap-selection, but does plain bi-linear filtering

34

This extension is all about helping the driver out, reducing the amount of work it is
required to do
Lower-level api than usually available.

35

On top the usual GL-setup

On bottom using the bindless extensions.

The format is split out to a separate call. Looking at Brink, this is significant as most of
our vertex-data is of the same format.
This means that we never change vertex-formats during our main render-passes.

36

The bulk of the work was to fix the places in our code where we relied on magic in
the drivers. We were being slack without knowing it.

Dealing with direct gpu pointers means you will hang your gpu every time you do
something wrong – and doing the initial conversion, that is every time.
Thanks to some quick work from the nvidia-guys, the debug-context will now not only
not-hang, it will tell you what call would have hung, and what you were doing wrong.
Greatly eases the implementation.

37

Result of this was a nice reduction in the CPU time taken up by setting vertex-attribs.
This was around 5-10% of our render cpu-time.

Brink does ”naïve” frame-temporary memory allocations, effectively allocating new
VBOs for every object that requires memory (typically gui or particles).
This works very well (we used to have a more elaborate setup, allocating a single
chunk of memory, but the driver actually handles these allocations very well - may as
well use that).
Ironically, when then optimizing vertex-attr. code, the frame-temp alloc. gets in the
way.

38

Debugging really is the #1 time-sink during development.

gDebugger / gl-intercept (which hopefully will continue to work on nv-hw) is very
useful to make sure you are actually doing what you think you are doing – allows you
to inspect command-buffer.

Wish: glIntercept with webgl preview? ...with gpad geometry-preview? ...and
shaders? ...hotreloadable..? One can only dream...

42

Nsight / GPU perfstudio are mostly useful for timing-purposes, but they require some
more work to be truely useful for OpenGL AAA games.

(Nvidia released app profiler lib apprears to be able to do this level of profiling on it’s
own).

We tried App Analyzer, which looks very promising, but it didn’t produce . We are
hopeful though.

(intel-tool is not targeted at working for opengl at all)

43

None of the tools show content of FBOs. GPU perfstudio looks very promising for
OpenGL though. App Analyzer is meant to show FBOs.

44

Roll your own. Everyone wants 360pix + gpad to have a magical lovechild that does
everything.
If you can hot-reload at runtime, and quickly iterate on code, that’s a very viable
alternative.

Hot-reloadable assets – main solution, very useful! Option to override packaged
assets runtime.
shaders / textures / meshes / assets... this is the most important debugging-tool!
Typical debugging session is quickly modifying shaders to extract the necessary
debug-data.

45

Also adds a number of debug render-modes to allow a level of debugging for non-
coders. Very useful for artists to see e.g. tangent-spaces, overdraw etc.

46

47

Selectively disabling different types of texturing: diffuse / specular / bump etc.

48

Dicing across objects, based on geometry density – builds BSP-tree

49

Overdraw – mostly for particles (valid to see alpha-tested overdraw as well)

50

- Break when something is bad, dump state, return to normal, dump state – diff in
favourite tool

- The Printf of gfx-debugging.

static bool dumpstate = false;
if(dumpstate) { dumpstate = false; glStateToFile(); }

51

You’re not the only one rendering. Steam and friends that render overlays, grabbing
your context.
paranoid-mode sanity checks of hw-state, making sure it is what we think it is before
a dra

52

Cort Stratton / naughty dog altdevblogaday post on debug-context

Using the debug-context removes the tedious glerror bisection of code, trying to find
the villain-functioncall

53

For laptops with two GPUs, a low-power one and a high-power one, there is no
”standard” for how to pick the right GPU to run on.
There are vendor-dependant ways to do this (e.g. Nvapi), but a unified solution
should be developed.

54

Small isolated code-setups are very handy to figure out api-quirks.
Driver-teams respond very well when sent small code-setups that show errors and
reproduce claimed driver-bugs (that mostly are not).
...a lot better than ”my game doesn’t work, here’s a nightly snapshot, you need to run
over to the dragon on level 4 and stab it with the banana.... the particle-effect should
be red!! Fixit!”

55

OpenGL allowed for direct3d 10 level functionality on all the platforms our customers
were using.

56

Hardcore shooters have it easy. Our customers are mostly invested enough in the
game that they will update their drivers to get the game to run (they are also used to
having to do this).
IHVs are very responsive and the great relationship with them means any kinks will be
ironed out before shipping.

57

The dbg-context is great, and should be used more – e.g. for performance warnings.
The debug-context allows for a lower level of api.
Rather than have the driver-teams write tons of fixup-code, show us what we are
doing wrong so we can fix it.
Add a “paranoid-mode” that will “treat warnings as errors”

58

There is a very large overlap of work between frames. On consoles we are able to
take advantage of this, build commandbuffers and simply patch these up with
changed data (typically matrices) per frame. Being able to do this on PC would be
great. We really want something like Display Lists, but restricted to make them
meaningful for hw.

GPU selffeed for gpu-based occlusion etc. would be great. The best exact form is not
entirely clear.

60

61

62

63

mig@splashdamage.com

64

